• 2022

    [1]Deng,H.,Wang,Y., Li,Q.,Shen,Z.,Gao,Y.,& Lisheng, J. (2022). Wind tunnel tests on aerodynamic noise from the head car of a high-speed train. Lecture Notes in Electrical Engineering, 163–176.   [Full text]  

    [2] Li,C.,Zhu,J.,Hu,Z.,Lei,Z.,&Zhu,Y.(2022). Investigation on aerodynamic noise generated from the simplified high-speed train leading cars. International Journal of Aeroacoustics, 21(3-4), 218–238.  [Full text]

    [3] Ma,Y.,Mohebbi,R.,Yang,Z.,&Sheremet,M. (2022). Thermal performance of an environmentally friendly nanoliquid in a cabinet with two l-shaped heaters: application for electronic cooling. International Journal of Numerical Methods for Heat & Fluid Flow, 32(12), 3637–3656.   [Full text]

    [4] Ouyang,M.,Chen,S.,Li,Q.,&Yang,Z.(2022). Numerical investigation on aerodynamic forces and flow patterns of high-speed trains from open air into long tunnel. Journal of Wind Engineering and Industrial Aerodynamics, 229, 105142.   [Full text]

    [5] Qiliang,L.,Wei,L.,Xiaowei,H.,&Zhigang,Y.(2022). Aerodynamic noise control of rearview mirror by steady and unsteady jets. Applied Acoustics, 192, 108739.   [Full text]

    [6] Qi-liang,L.,Zhuo-ming,L.,Meng-han,O.,&Zhi-gang,Y.(2022). Coherence and reduced order analyses of flow field and aerodynamic noise for full-scale high-speed trains pantograph. Applied Acoustics, 193, 108777.   [Full text]

    [7] Wei,A.,Yang,Z.,Tang,L.,Xiong,B.,Wang,P.,&Jin,Z.(2022). Temperature measurements in the freezing supercooled water droplet by utilizing molecular tagging thermometry technique. Review of Scientific Instruments, 93(7), 074901.  [Full text] 

    [8] Xu,X.,Zhao,L.,&Yang,Z.(2022). Field Experimental Investigation on Human Thermal Comfort in Vehicle Cabin. SAE Technical Paper Series.   [Full text] 

    [9]Yang,Z.,Yu,H.,Wang,Y.,&Shen,Z. (2022). Application of immersed boundary-lattice boltzmann method in failure of automobile door sealing strip. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 095440702211218.   [Full text]

    [10]Yang,Z.,Zhou,B.,Jin,Z.,Yang,Z.,Yi,X.,&Du,Y.(2022). Impingement of a water droplet onto a shear-driven water film. Experiments in Fluids, 63(12).    [Full text]

    [11]Yang,Z.,Zhou,B.,Yang,Z.,Yi,X.,Du,Y.,&Jin,Z. (2022). Impingement and splashing of a supercooled large droplet on a freezing water film. International Journal of Multiphase Flow, 157, 104263.  [Full text]  

    [12]Yu,X.,Jia,Q.,&Yang,Z.(2022). Comprehensive Study of the Aerodynamic Influence of Ground and Wheel States on the Notchback DrivAer. Energies, 15(3), 1124.  [Full text]  

    [13]Zhao,L.,Guo,B.,&Yang,Z.(2022). An experimental investigation on the evaporation and condensation heat transfer of air-cooled multi-port flat heat pipes. International Journal of Heat and Mass Transfer, 187, 122554.  [Full text]   

    [14]Zhao,L.,Li,T.,Guo,B.,Wang,J.,Zhu,Z.,Zhang,J.,Zhang,H.,&Yang,Z.(2022). Improving aero-thermal environment in vehicle under-hood through small modification upstream the cooling module. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 095440702210859.  [Full text]  

    [15]Zhou,Z.,Xia,C.,Du,X.,Shan,X.,&Yang,Z.(2022). Impact of the isentropic and Kantrowitz limits on the aerodynamics of an evacuated tube transportation system. Physics of Fluids, 34(6), 066103.  [Full text] 

    [16]Zhou,Z.,Xia,C.,Shan,X.,&Yang,Z.(2022). Numerical Study on the Aerodynamics of the Evacuated Tube Transportation System from Subsonic to Supersonic. Energies, 15(9), 3098.  [Full text] 

    [17]Zhu,J.,Hu,Z.,Xia,C.,&Li,Q.(2022). Numerical investigation on the flow underneath a high-speed train of six coaches marshalled with different bogies. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 095440972211329.  [Full text]  

    [18]Zhuo-ming,L.,Qi-liang,L.,&Zhi-gang,Y.(2022). Flow structure and far-field noise of high-speed train under ballast track. Journal of Wind Engineering and Industrial Aerodynamics, 220, 104858.  [Full text] 

    [19]陈羽,柳壹明,毛懋,李启良,王毅刚 & 杨志刚..高速列车底部结构参数对气动噪声影响规律. 西南交通大学学报.  [Full text] 

    [20]冀怡名,史佳伟,圣小珍,何远鹏,徐凡 & 陈力.(2022).波浪形前缘叶片对动车组牵引变压器冷却风机气动性能及噪声特性的影响. 中南大学学报(自然科学版)(07),2798-2808.  [Full text]

    [21]邵景峰,杨志刚,杨再峰 & 郑恩泽.(2022).基于事件相关电位绝对时间标记法的汽车造型语义评价方法. 同济大学学报(自然科学版)(08),1207-1214.  [Full text]

    [22]沈哲,杨志刚,彭里奇,&王勇. (2022). 汽车风洞非均匀声场偏移导致纯音幅值变化. 同济大学学报(自然科学版)(006), 050.  [Full text] 

    [23]王毅刚,朱朗贤,焦燕 & 张昊.(2022).基于圆柱绕流的气动声源识别方法. 同济大学学报(自然科学版)(10),1500-1507.  [Full text] 

    [24]杨志刚,刘嘉楠&陈羽.(2022).开口式风洞高速列车头车气动实验模型选取方法. 同济大学学报(自然科学版)(07),1035-1043.  [Full text] 

    [25]朱剑月,程冠达,陈力,高阳 & 张清.(2022).高速列车排障器底部后端扰流对转向架区域流场与气动噪声特性的影响. 中国铁道科学(06),119-130.  [Full text] 

  • 2021

    [1]Chang,Y.,Yang,Z.&Li,Q.(2020). Numerical and experimental research on flow and aerodynamic noise    characteristics of coach.   Proceedings  of the   Institution of  Mechanical  Engineers,   Part  D:  Journal  of  Automobile Engineering, 235(6), 1685–1701.  [Full text] 

    [2]Chu, S. , Xia , C. , Wang, H. , Fan, Y. ,& Yang , Z.(2021). Three-dimensional spectral proper orthogonal decomposition analyses of the turbulent flow around a seal-vibrissa-shaped cylinder. Physics of Fluids, 33(2),025106.  [Full text] 

    [3]Fang,Y.,Yang,Z.,Ma,Y.,Li,Q.,&Du,X.(2020). Study of unsteady flow through and around an array of isolated square cylinders. Journal of Fluids Engineering, 143(3).  [Full text] 


    [4]Hao,X.,Yang,Z.,&Li,Q.(2021).Study on flow field and aerodynamic noise of Electric Vehicle Rearview Mirror. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 236(4), 724–737.  [Full text] 


    [5]Hao,X.,Yang,Z.,&Li,Q.(2021b).Study on flow field and aerodynamic noise of electric vehicle rearview mirror. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 236(4), 724–737.  [Full text] 


    [6]He,Y.,Liu,Y.,Wen,S.,&Yang,Z.(2021).Separation of convective and acoustic pressure fluctuations on the front side window of DrivAer model based on pellicular mode decomposition. Applied Acoustics, 174, 107755.  [Full text]


    [7]He,Y.,Wan,R.,Liu,Y.,Wen,S.,&Yang,Z.(2021). Transmission characteristics and mechanism study of hydrodynamic and acoustic pressure through a side window of DrivAer model based on modal analytical approach. Journal of Sound and Vibration, 501, 116058.  [Full text] 


    [8]He,Y.,Wen,S.,Liu,Y.,& Yang,Z.(2020). Wind noise source characterization and transmission study through a side glass of DrivAer model based on a hybrid DES/APE method. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 235(6), 1757–1766.  [Full text] 


    [9]Huang,G.,Seid,K.H.,Yang,Z.,& Leung,R.C. (2021). Interaction and acoustics of separated flows from a D-shaped Bluff Body. International Journal of Numerical Methods for Heat & Fluid Flow, 32(4), 1186–1203.  [Full text] 


    [10]Jia,Q.,Huang,L.,Zhu,Y.,Rashidi,M.,Xu,J.,& Yang,Z.(2021). Experimental research of active control optimization on a 3/4 open-jet wind tunnel’s jet section. Alexandria Engineering Journal, 60(2), 2265–2278.   [Full text] 


    [11]Li,Y.,Cui,W.,Jia,Q.,Li,Q.,Yang,Z.,Morzyński,M.,& Noack,B.R.(2021). Explorative gradient method for active drag reduction of the fluidic pinball and slanted Ahmed body. Journal of Fluid Mechanics, 932.  [Full text] 


    [12]Ma,Y.,& Yang,Z.(2019b). LBM simulation of MHD nanofluid heat transfer in a square cavity with a cooled porous obstacle: effects of various temperature boundary conditions. Journal of Thermal Analysis and Calorimetry, 143(1), 545–558.  [Full text] 


    [13]Ma,Y.,Rashidi,M.M.,Mohebbi,R.,& Yang,Z.(2020).Investigation of magnetohydrodynamics in AG-Tio2/water hybrid nanofluid in a SHAMSE knot shaped cavity. International Journal of Numerical Methods for Heat & Fluid Flow, 31(1), 251–272.  [Full text]


    [14]Shen,Z.,Yang,Z.,& Wang,Y.(2021). Unsteady correlation between shear layer vorticity and acoustic refraction in low speed open-jet wind tunnel. Applied Acoustics, 182, 108202.  [Full text]


    [15]Shen,Z.,Yang,Z.,Abbas,M.A.,Yu,H.,& Chen, L.(2021). An Immersed Boundary–Lattice Boltzmann Approach to Study Deformation and Fluid–Structure Interaction of Hollow Sealing Strip. Energies, 14(23), 8110.  [Full text]


    [16]Shen,Z.,Yang,Z.,Abbas,M.A.,Yu,H.,& Chen,L.(2021b). An Immersed Boundary–Lattice Boltzmann Approach to Study Deformation and Fluid–Structure Interaction of Hollow Sealing Strip. Energies, 14(23), 8110.  [Full text] 


    [17]Sheremet,M., & Rashidi,M. (2021). Thermal convection of nano-liquid in an electronic cabinet with finned heat sink and heat generating element. Alexandria Engineering Journal, 60(3), 2769–2778.  [Full text]


    [18]Yao,X.,Ju,J.,Yang,Z.,Yi,X., & Jin,Z. (2021). Impingement and freezing of a supercooled large droplet on an ice surface. Physics of Fluids, 33(10), 103304.  [Full text] 


    [19]李启良,李卓明 & 魏峥.(2021).圆柱与扭转柱杆件受电弓气动与噪声研究. 同济大学学报(自然科学版)(08),1177-1183.  [Full text]


    [20]杨志刚,彭里奇,沈哲 & 陈力.(2021).基于胶带密封法的汽车各密封部位动静态泄漏噪声的试验研究. 汽车工程(05),784-790.  [Full text]


    [21]杨志刚,张波 & 贾青.(2021).耦合气动参数与车身姿态变化的圈速仿真. 同济大学学报(自然科学版)(01),124-134.  [Full text]


    [22]赵兰萍,郭本涛 & 杨志刚.(2021).车用热泵内部冷凝器结构对性能的影响. 化工学报(09),4616-4628.  [Full text]


    [23]赵兰萍,郑振鹏,徐鑫 & 杨志刚.(2021).基于驾乘人员热感觉的车内空调送风参数设计. 同济大学学报(自然科学版)(05),721-730.  [Full text]


    [24]郑诚毅,东乔天,赵宾宾,金时彧,隋冬雨,杨志刚... & 金哲岩.(2021).不同攻角和翼型的简化角冰特征参数的气动数值模拟. 同济大学学报(自然科学版)(10),1443-1450.  [Full text]


    [25]朱剑月,徐凡斐,朱颖谋 & 张俊.(2021).高速列车头车安装裙板后流场与气动噪声特性仿真分析. 振动工程学报(05),1036-1044.  [Full text]


    [26]朱剑月,张清,徐凡斐,刘林芽 & 圣小珍.(2021).高速列车气动噪声研究综述. 交通运输工程学报(03),39-56.  [Full text] 



     

     




  • 2020

    [1]Abbas,M.,Bhatti,M.,&Rashidi,M.(2020). Heat transfer on magnetohydrodynamic stagnation point flow through a porous shrinking/stretching sheet: A numerical study. Thermal Science, 24(2 Part B),1335–1344.  [Full text] 

    [2]Astanina,M.S.,Rashidi,M.M.,Sheremet,M.A.,&Lorenzini,G.(2020). Cooling System with Porous Finned Heat Sink for Heat-Generating Element. Transport in Porous Media,133(3), 459–478.  [Full text] 

    [3]Chen,W.,Qin,X.,&Yang,Z.(2020). Effects of installation location on the in-service wind load of a tower crane. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 173(2), 141–156.  [Full text]

    [4]Chen,W.,Qin,X.,Yang,Z.,&Zhan,P.(2019).Wind-induced tower crane vibration and safety evaluation. Journal of Low Frequency Noise, Vibration and Active Control, 39(2), 297–312.  [Full text] 

    [5]Du,X.,Wei,A.,Fang,Y.,Yang,Z.,Wei,D.,Lin,C.H.,&Jin,Z.(2020). The effect of bend angle on pressure drop and flow behavior in a corrugated duct. Acta Mechanica, 231(9), 3755–3777.  [Full text]

    [6]Du,X.,Yang,Z.,Jin,Z.,Zhu,Y.,&Zhou,Z. (2019). A numerical prediction and potential control of typical icing process on automobile windshield under nocturnal radiative cooling and subfreezing conditions. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 234(5), 1480–1496.  [Full text] 

    [7]Fan,Y.,Xia,C.,Chu,S.,Yang,Z.,& Cadot,O. (2020). Experimental and numerical analysis of the bi-stable turbulent wake of a rectangular flat-backed bluff body. Physics of Fluids, 32(10), 105111.  [Full text]

    [8]Fang,Y.,Yang,Z.,Ma,Y.,& Li,Q.(2020). Study of flow through and around a square cylinder array. Journal of Physics: Conference Series, 1600(1), 012029.  [Full text] 

    [9]He,Y.,Schröder,S.,Shi,Z.,Blumrich,R.,Yang,Z.,& Wiedemann,J.(2020). Wind noise source filtering and transmission study through a side glass of DrivAer model. Applied Acoustics, 160, 107161.  [Full text] 

    [10]Li,Q.,Dai,W.,Yang,Z.,&Jia,Q.(2019b). Investigation on aerodynamic characteristics of tailing vehicle hood in a two-vehicle platoon. Proceedings of the Institution of Mechanical Engineers, Part D:  Journal of Automobile Engineering, 234(1), 283–299.  [Full text] 

    [11]Li,T.,Hemida,H.,Rashidi,M.M.,&Zhang,W. (2020). The effect of numerical divergence schemes on the flow around trains. Fluid Dynamics Research, 52(2), 025509.  [Full text] 

    [12]Ma,Y.,&Yang,Z.(2020). Simplified and highly stable thermal Lattice Boltzmann method simulation of hybrid nanofluid thermal convection at high Rayleigh numbers. Physics of Fluids, 32(1), 012009.  [Full text] 

    [13]Ma,Y.,Mohebbi,R.,Rashidi,M.M.,Yang,Z.,&Fang,Y.(2020).Baffle and geometry effects on nanofluid forced convection over forward- and backward-facing steps channel by means of lattice Boltzmann method. Physica A: Statistical Mechanics and Its Applications, 554, 124696.  [Full text] 

    [14]Ma,Y.,Mohebbi,R.,Rashidi,M.,Yang,Z.,&Sheremet,M.(2020).Nanoliquid thermal convection in I-shaped multiple-pipe heat exchanger under magnetic field influence. Physica A: Statistical Mechanics  and Its Applications, 550, 124028.  [Full text] 

    [15]Ma,Y.,Rashidi,M.,Mohebbi,R.,&Yang,Z.(2020). Nanofluid natural convection in a corrugated solar power plant using the hybrid LBM-TVD method. Energy, 199, 117402.  [Full text] 

    [16]Yuan,H.,Yang,Z.,Wang,Y.,Fan,Y.,&Fang,Y.(2020).Experimental analysis of hydrodynamic and acoustic pressure on automotive front side window. Journal of Sound and Vibration, 476, 115296.  [Full text] 

    [17]Zhao,L.,Wang,B.,Wang,J.,Zhu,Z.,Li,T.,Guo,B.,Zhang,J.,Zhang,H.,&Yang,Z. (2020). Effect of non-uniform airflow on the performance of a parallel-flow heat exchanger considering internal fluid  distribution—Simulation studies and its experimental validation. Applied Thermal Engineering, 180, 115685.  [Full text] 

    [18]Zhao,L.,Zheng,Z.,Guo,B.,&Yang,Z.(2020). Experimental investigation on the thermal performance of air-cooled multi-port flat heat pipes. International Journal of Heat and Mass Transfer,154, 119600.  [Full text] 

    [19]Zhao,Y.Y.,Yang,Z.G.,Li,Q.L.,&Xia,C. (2020). Analysis of the near-field and far-field sound pressure generated by high-speed trains pantograph system. Applied Acoustics, 169, 107506.  [Full text] 

    [20]Zhou,Z.,Xia,C.,Shan,X.,&Yang,Z.(2019). The Impact of Bogie Sections on the Wake Dynamics of a High-Speed Train. Flow, Turbulence and Combustion, 104(1), 89–113.  [Full text] 

    [21]戴文童,李启良,李卓明,常艺菲& 杨志刚.(2020).不同雷诺数下车辆队列尾车发动机舱盖气动特性研究. 汽车工程(05),593-599+607.  [Full text]

    [22]邓韬,杨志刚 & 贾青.(2020).基于本征正交分解的DrivAer快背车非定常尾迹分析. 同济大学学报(自然科学版)(02),249-256.  [Full text]

    [23]贾青,陈佳萍 & 杨志刚.(2020).基于气动减阻和散热需求的主动格栅优化设计. 同济大学学报(自然科学版)(02),264-275.  [Full text]

    [24]贾青,林靖如,余霄雁 & 杨志刚.(2020).车身简化对不同轮辐下整车气动阻力变化趋势的影响. 同济大学学报(自然科学版)(01),78-86.  [Full text]

    [25]李田田,赵兰萍,王建新,朱志军,张俊&张浩.(2020).发动机舱的冷却气流仿真与散热的改善. 汽车工程(09),1197-1205+1210.  [Full text] 

    [26]沈哲,王毅刚,杨志刚 & 贺银芝.(2020).风洞中未知声源漂移误差的逼近修正. 吉林大学学报(工学版)(05),1584-1589.  [Full text] 

    [27]沈哲,王毅刚,杨志刚,贺银芝& 彭里奇.(2020).用于汽车车内风噪评价的频谱光顺度研究汽车工程(09),1206-1210.  [Full text] 

    [28]王宏朝,单希壮& 杨志刚.(2020).矩阵风扇冷却系统模糊控制的研究. 汽车工程(03),345-352.  [Full text] 

    [29]杨志刚,范亚军,夏超,储世俊 & 单希壮.(2020).基于双稳态尾迹的方背Ahmed模型减阻吉林大学学报(工学版)(05),1635-1644.  [Full text]

    [30]杨志刚,韩业恺,李启良 & 单希壮.(2020).D型体主被动结合流动控制研究. 同济大学学报(自然科学版)(04),566-574.  [Full text]

    [31]杨志刚,徐鑫,赵兰萍,郑振鹏 & 林赵敏.(2020).乘员舱驾驶员位置微环境及人体热舒适分析. 同济大学学报(自然科学版)(05),733-742.  [Full text]

    [32]张佳,吴海波,陈蒨,方志云,王毅刚 & 余柳平.(2020).基于格子波尔兹曼方法的某乘用车空调系统气动噪声的直接模拟与优化. 汽车工程(08),1103-1109.  [Full text] 

    [33]赵兰萍,郑振鹏,郭本涛 & 杨志刚.(2020).结构因素对动力电池用多孔平板热管性能的影响. 同济大学学报(自然科学版)(04),559-565.  [Full text]

    [34]朱晖,杨志刚 & 王国俊.(2020).基于圆环孔合成射流器的LED前照灯散热控制. 同济大学学报(自然科学版)(02),257-263.  [Full text]

    [35]朱剑月,吕苏,陈力 & 沈哲.(2020).高速列车底部流动特性分析. 机械工程学报(12),133-143.  [Full text]

  • 2019


    [1]Astanina,M.,Rashidi,M.,Sheremet,M.,& Lorenzini,G.(2019). Effect of porous insertion on convective energy transport in a chamber filled with a temperature-dependent viscosity liquid in the presence of a heat  [Full text]


    [2]Chen,M.,Yang,Z.,& Jin, Z.(2019). An experimental investigation of the melting process of an ice bead on the smooth and micro-grooved surfaces under a hot shear flow. International Journal of Heat and Mass Transfer, 144, 118630.  [Full text]


    [3]Du,X.,Yang,Z.,Jin,Z.,Zhu,Y.,& Zhou, Z. (2019). A theoretical and experimental study of typical heterogeneous ice nucleation process on auto windshield under nocturnal radiative cooling and subfreezing conditions. International Journal of Heat and Mass Transfer, 136, 610–626.  [Full text]


    [4]Falahat, A., Bahoosh, R., Noghrehabadi, A., & Rashidi, M. M. (2019). Experimental study of heat transfer enhancement in a novel cylindrical heat sink with helical minichannels. Applied Thermal Engineering, 154, 585–592.   [Full text] 


    [5]He, Y., Andonov, A. A., Shi, Z., Blumrich, R., Yang, Z., & Wiedemann, J. (2018). Flow-induced vibration analysis of a vehicle’s front side window glass. Journal of Vibration and Control, 25(8), 1411–1423.   [Full text] 


    [6]Jia, Q., Zhu, Y., Bao, D., Rashidi, M. M., & Yang, Z. (2019). On the Low Frequency Pressure Fluctuation in a 3/4 Open Jet Automotive Wind Tunnel. Journal of Applied Fluid Mechanics, 12(5), 1359–1369.   [Full text] 


    [7]Jiajun Ju, Zhigang Yang, Xian Yi, & Zheyan Jin. (2019). Experimental investigation of the impact and freezing processes of a hot water droplet on an ice surface. Physics of Fluids, 31(5), 057107.   [Full text]


    [8]Keyhani Asl, A., Hossainpour, S., Rashidi, M., Sheremet, M., & Yang, Z. (2019). Comprehensive investigation of solid and porous fins influence on natural convection in an inclined rectangular enclosure. International Journal of Heat and Mass Transfer, 133, 729–744.   [Full text]


    [9]Khalil, H., Khan, R. A., Baleanu, D., & Rashidi, M. M. (2019). Some new operational matrices and its application to fractional order Poisson equations with integral type boundary constrains. Computers &Amp; Mathematics With Applications, 78(6), 1826–1837.   [Full text]


    [10]Li, Y., & Zhu, H. (2019). A Research on Electric Car Styling Design and Low Aerodynamic Drag. IOP Conference Series: Materials Science and Engineering, 573(1), 012014.   [Full text] 


    [11]Ma, Y., & Yang, Z. (2019). Investigation of heat transfer of MHD Al2O3/water nanofluid in an enclosure with a semicircular wall and a heating obstacle. International Journal of Modern Physics C, 30(12), 1950105.   [Full text]


    [12]Ma, Y., Mohebbi, R., Rashidi, M. M., & Yang, Z. (2018). MHD forced convection of MWCNT–FE3O4/water hybrid nanofluid in a partially heated τ-shaped channel using LBM. Journal of Thermal Analysis and Calorimetry, 136(4), 1723–1735.   [Full text]


    [13]Ma, Y., Mohebbi, R., Rashidi, M. M., & Yang, Z. (2019). Effect of hot obstacle position on natural convection heat transfer of MWCNTs-water nanofluid in U-shaped enclosure using lattice Boltzmann method. International Journal of Numerical Methods for Heat &Fluid Flow, 29(1), 223–250.   [Full text]


    [14]Ma, Y., Mohebbi, R., Rashidi, M. M., & Yang, Z. (2019). MHD convective heat transfer of AG-mgo/water hybrid nanofluid in a channel with active heaters and Coolers. International Journal of Heat and Mass Transfer, 137, 714–726.   [Full text] 


    [15]Ma, Y., Mohebbi, R., Rashidi, M. M., & Yang, Z. (2019d). Koo–Kleinstreuer–Li correlation for simulation of nanofluid natural convection in hollow cavity in existence of magnetic field. Journal of Thermal Analysis and Calorimetry, 137(4), 1413–1429.   [Full text] 


    [16]Ma, Y., Mohebbi, R., Rashidi, M. M., & Yang, Z. (2019d). Mixed convection characteristics in a baffled U-shaped lid-driven cavity in the presence of magnetic field. Journal of Thermal Analysis and Calorimetry, 140(4), 1967–1984.   [Full text]


    [17]Ma, Y., Mohebbi, R., Rashidi, M. M., Manca, O., & Yang, Z. (2018). Numerical investigation of MHD effects on nanofluid heat transfer in a baffled U-shaped enclosure using lattice Boltzmann method. Journal of Thermal Analysis and Calorimetry, 135(6), 3197–3213.   [Full text]


    [18]Ma, Y., Mohebbi, R., Rashidi, M., Yang, Z., & Sheremet, M. A. (2019). Numerical study of MHD nanofluid natural convection in a baffled U-shaped enclosure. International Journal of Heat and Mass Transfer, 130, 123–134.   [Full text] 


    [19]Ma, Y., Rashidi, M. M., & Yang, Z. G. (2018). Numerical simulation of flow past a square cylinder with a circular bar upstream and a splitter plate downstream. Journal of Hydrodynamics, 31(5), 949–964.   [Full text]


    [20]Matori, A., Mohebbi, R., Hashemi, Z., & Ma, Y. (2018). Lattice Boltzmann study of multi-walled carbon nanotube (MWCNT)-Fe3O4/water hybrid nanofluids natural convection heat transfer in a Π-shaped cavity equipped by hot obstacle. Journal of Thermal Analysis and Calorimetry, 136(6), 2495–2508.   [Full text] 


    [21]Mohebbi, R., Haghighi Khalilabad, S., & Ma, Y. (2019). Effect of γ-Al2O3/water nanofluid on natural convection heat transfer of corrugated ┐ shaped cavity: Study the different aspect ratio of grooves. Journal of Applied Fluid Mechanics, 12(4), 1151–1160.   [Full text]


    [22]Noreen, S., Malik, A., & Rashidi, M. M. (2019). Peristaltic Flow of Shear Thinning Fluid via Temperature-Dependent Viscosity and Thermal Conductivity. Communications in Theoretical Physics, 71(4), 367.   [Full text] 


    [23]Oztop, H., A. Almeshaal, M., Kolsi, L., Rashidi, M., & E. Ali, M. (2019). Natural Convection and Irreversibility Evaluation in a Cubic Cavity with Partial Opening in Both Top and Bottom Sides. Entropy, 21(2), 116.   [Full text]


    [24]Shafiq, A., Rashidi, M. M., Hammouch, Z., & Khan, I. (2019). Analytical investigation of stagnation point flow of Williamson liquid with melting phenomenon. Physica Scripta, 94(3), 035204.   [Full text] 


    [25]Wang, B. X., Yang, Z. G., & Zhu, H. (2019). Active flow control on the 25°Ahmed body using a new unsteady jet. International Journal of Heat and Fluid Flow, 79, 108459.   [Full text] 


    [26]Wang, B., Yang, Z., & Zhu, H. (2019). Drag reduction on the 25°Ahmed body using a new zero-net-mass-flux flow control method. Theoretical and Computational Fluid Dynamics, 33(5), 411–431.   [Full text] 


    [27]Wang, H., Shan, X., & Yang, Z. (2018). Experimental investigation on air-side flow-field and water-side heat exchange performance of radiator based on Matrix fans. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 233(4), 824–835.   [Full text]


    [28]Yan, G., Xia, C., Zhou, H., Zhu, H., & Yang, Z. (2019). Experimental Investigation of the Bi-Stable Behavior in the Wake of a Notchback MIRA Model. SAE Technical Paper Series.   [Full text]


    [29]Zhao, L., Wang, B., Wang, R., & Yang, Z. (2019). Aero-thermal behavior and performance optimization of rectangular finned elliptical heat exchangers with different tube arrangements. International Journal of Heat and Mass Transfer, 133, 1196–1218.   [Full text]


    [30]Zhong, L., Li, Q., Wang, Y., & Yang, Z. (2018). Aerodynamic noise prediction of passenger vehicle with hybrid detached eddy simulation/acoustic perturbation equation method. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 233(10), 2390–2404.   [Full text] 


    [31]黄光远,LEUNG Chi Kin Randolph,杨志刚 & SEID Ka Him.(2019).二维类车体尾迹中的低频震荡(英文). 同济大学学报(自然科学版)(S1),26-31.   [Full text]


    [32]贾青,黄磊,鞠树彬 & 杨志刚.(2019).阻塞比对开口式风洞喷口风速测量方法的影响. 同济大学学报(自然科学版)(11),1641-1647.   [Full text]


    [33]李启良,杜文海,王毅刚 & 杨志刚.(2019).基于主动射流的汽车后视镜区域气动噪声控制. 同济大学学报(自然科学版)(08),1195-1200.   [Full text]


    [34]王冰心,杨志刚 & 朱晖.(2019).类车体尾迹流动非定常特性. 同济大学学报(自然科学版)(01),113-123.   [Full text]


    [35]杨志刚,李逸清,崔文诗 & 贾青.(2019).合成射流激励频率对D型体流动减阻控制的影响. 同济大学学报(自然科学版)(S1),9-13.   [Full text]


    [36]杨志刚,林赵敏 & 赵兰萍.(2019).基于等效均匀温度的车内热环境分析. 同济大学学报(自然科学版)(11),1633-1640.   [Full text]


    [37]杨志刚,毛懋 & 陈羽.(2019).高速列车底部结构参数对气动阻力作用规律. 同济大学学报(自然科学版)(07),1055-1064.   [Full text]


    [38]杨志刚,徐鑫,赵兰萍 & 林赵敏.(2019).冬季夜间乘员舱内热环境及人体热舒适性研究. 同济大学学报(自然科学版)(03),408-413.   [Full text]


    [39]袁海东,杨志刚 & 李启良.(2019).汽车前侧窗表面压力激励及其源分析. 湖南大学学报(自然科学版)(08),9-19.   [Full text] 


    [40]袁海东,杨志刚,单希壮 & 李启良.(2019).类后视镜钝体尾迹分析. 湖南大学学报(自然科学版)(02),28-35.  [Full text] 


    [41]赵兰萍,江从喜,徐鑫 & 杨志刚.(2019).整车运行环境下油冷对外转子轮毂电机温度特性的影响. 汽车工程(04),373-380.   [Full text]


    [42]赵兰萍,王仁杰,刘桂兰 & 杨志刚.(2019).平行流蒸发器制冷剂流量分配特性. 同济大学学报(自然科学版)(02),261-268+274.   [Full text]

     

  • 2018

    [1]Du, X., Yang, Z., Jin, Z., Xia, C., & Bao, D. (2018). A comparative study of passive control on flow structure evolution and convective heat transfer enhancement for impinging jet. International Journal of Heat and Mass Transfer, 126, 256–280.   [Full text] 


    [2]He, Y., Long, L., & Yang, Z. (2018). Reduction and optimization of a vehicle's rear side window buffeting. Noise Control Engineering Journal, 66(4), 298–307.   [Full text] 


    [3]He, Y., Shi, Z., Wu, Y., & Yang, Z. (2018). Sound radiation analysis of a front side window glass of DrivAer model under wind excitation. Shock and Vibration, 2018, 1–9.   [Full text] 


    [4]Jin, Z., Chen, M., & Yang, Z. (2018). An experimental investigation of the melting process of an ice bead in a hot shear flow. International Journal of Heat and Mass Transfer, 125, 190–201.   [Full text]


    [5]Ju, J., Jin, Z., Zhang, H., Yang, Z., & Zhang, J. (2018). The impact and freezing processes of a water droplet on different cold spherical surfaces. Experimental Thermal and Fluid Science, 96, 430–440.   [Full text] 


    [6]Li, Q., Dai, W., Zhong, L., Yang, Z., Du, K., Xu, Y., & Rashidi, M. M. (2018). Effects of reinjection on flow field of open jet automotive wind tunnel test section. Journal of Applied Fluid Mechanics, 11(1), 43–53.   [Full text] 


    [7]Li, Q., Zhong, L., Wang, Y., Yang, Z., & Rashidi, M. M. (2018). Multi-parameter optimization of Automotive Rear View Mirror Region for reducing aerodynamic noise. Noise Control Engineering Journal, 66(1), 11–26.   [Full text] 


    [8]Ma, Y., Mohebbi, R., Rashidi, M. M., & Yang, Z. (2018). Numerical simulation of flow over a square cylinder with upstream and downstream circular bar using lattice Boltzmann method. International Journal of Modern Physics C, 29(04), 1850030.   [Full text] 


    [9]Ma, Y., Mohebbi, R., Rashidi, M. M., & Yang, Z. (2018). Simulation of nanofluid natural convection in a U-shaped cavity equipped by a heating obstacle: Effect of cavity's aspect ratio. Journal of the Taiwan Institute of Chemical Engineers, 93, 263–276.   [Full text] 


    [10]Ma, Y., Mohebbi, R., Rashidi, M. M., & Yang, Z. (2018). Study of nanofluid forced convection heat transfer in a bent channel by means of lattice Boltzmann method. Physics of Fluids, 30(3), 032001.   [Full text]


    [11]Rashidi, M., Yang, Z., Bhatti, M., & Abbas, M. (2018). Heat and mass transfer analysis on MHD blood flow of Casson fluid model due to Peristaltic Wave. Thermal Science, 22(6 Part A), 2439–2448.   [Full text]


    [12]Xia, C., Wang, H., Bao, D., & Yang, Z. (2018). Unsteady flow structures in the wake of a high-speed train. Experimental Thermal and Fluid Science, 98, 381–396.   [Full text]


    [13]Xia, C., Wei, Z., Yuan, H., Li, Q., & Yang, Z. (2018). POD analysis of the wake behind a circular cylinder coated with porous media. Journal of Visualization, 21(6), 965–985.   [Full text] 


    [14]Yu, X., Jia, Q., Bao, D., & Yang, Z. (2018). A comparative study of different wheel rotating simulation methods in automotive aerodynamics. SAE Technical Paper Series.   [Full text]  


    [15]Yuan, H., Yang, Z., Xia, C., & Li, Q. (2018). Reduced-order modeling of pressure excitation on automotive front side window. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 233(10), 2669–2683.   [Full text]


    [16]Zhang, H., Jin, Z., Jiao, M., & Yang, Z. (2018). Experimental investigation of the impact and freezing processes of a water droplet on different cold concave surfaces. International Journal of Thermal Sciences, 132, 498–508.   [Full text]


    [17]Zhao, L., Wang, R., Gu, X., & Yang, Z. (2018). Parametric study on rectangular finned elliptical tube heat exchangers with the increase of number of rows. International Journal of Heat and Mass Transfer, 126, 871–893.   [Full text]  


    [18]Zhu, Y., Bao, D., Jia, Q., & Yang, Z. (2018). Application of the Vortex identification algorithms in the study of the shear layer in a 3/4 open jet automotive wind tunnel. SAE Technical Paper Series.   [Full text]


    [19]陈伟,秦仙蓉 & 杨志刚.(2018).塔式起重机塔身和起重臂的风载荷特征分析. 浙江大学学报(工学版)(12),2262-2270.   [Full text]


    [20]贺银芝,卢春阳,吴宇 & 杨志刚.(2018).汽车车内气动噪声客观评价分析. 汽车工程(10),1179-1184.   [Full text] 


    [21]贺银芝,石子豪,吕越 & 杨志刚.(2018).等效约束下风激励汽车前侧窗玻璃声辐射分析. 同济大学学报(自然科学版)(03),382-388.   [Full text]


    [22]李启良,曹冠宁,李璇,杨志刚 & 钟立元.(2018).三厢轿车多参数气动优化. 吉林大学学报(工学版)(03),670-676.   [Full text] 


    [23]李启良,杜文海,李璇,杨志刚 & 陈羽.(2018).基于遗传算法的带内流低阻车身气动优化. 同济大学学报(自然科学版)(01),94-99.   [Full text]


    [24]王宏朝,单希壮 & 杨志刚.(2018).基于矩阵风扇的车辆前端换热优化. 西安交通大学学报(01),69-76.   [Full text]


    [25]王毅刚,张婕,俞悟周,李启良 & 柳阳.(2018).基于统计能量法的汽车风噪传播特性分析. 同济大学学报(自然科学版)(12),1696-1704.   [Full text]


    [26]余霄雁,贾青 & 杨志刚.(2018).轮拱罩充满率对整车气动特性的影响. 同济大学学报(自然科学版)(11),1550-1555.   [Full text]


    [27]袁海东,杨志刚 & 李启良.(2018).A柱涡动力学特性随前窗倾角变化研究. 同济大学学报(自然科学版)(12),1705-1714+1730.   [Full text]


    [28]赵兰萍,高磊,刘彦麟 & 杨志刚.(2018).进风条件对平行流冷凝器性能的影响. 同济大学学报(自然科学版)(01),109-117.   [Full text]


    [29]赵兰萍,王贝 & 杨志刚.(2018).纵向涡发生器在翅片管束中的位置优化. 同济大学学报(自然科学版)(12),1722-1730.   [Full text]


    [30]周华,杨志刚 & 朱晖.(2019).基于整车风洞试验的MIRA车型数值计算. 吉林大学学报(工学版)(04),1043-1053.   [Full text] 


    [31]朱晖,王凡 & 杨志刚.(2018).近地鱼形钝体气动阻力特性研究. 同济大学学报(自然科学版)(06),804-810.   [Full text]


    [32]朱晖,周永祥,杨志刚 & 史芳琳.(2018).类车体气动性能的大涡模拟. 同济大学学报(自然科学版)(06),811-818.   [Full text]


    [33]朱剑月,任利惠 & 雷震宇.(2018).高速列车转向架舱对转向架区域流场与气动噪声影响. 同济大学学报(自然科学版)(11),1556-1561+1608.   [Full text]





     
















     







  • 2017

    [1]He, Y., Wang, B., Shen, Z., Yang, Z., Heilmann, G., Zhang, T., & Dong, G. (2017). Correlation Analysis of Interior and Exterior Wind Noise Sources of a Production Car Using Beamforming Techniques. SAE Technical Paper Series.   [Full text]


    [2]Jin, Z., Cheng, X., &Yang, Z. (2017). Experimental investigation of the successive freezing processes of water droplets on an ice surface. International Journal of Heat and Mass Transfer, 107, 906–915.   [Full text]


    [3]Jin, Z., Zhang, H., & Yang, Z. (2017). Experimental investigation of the impact and freezing processes of a water droplet on an ice surface. International Journal of Heat and Mass Transfer, 109, 716–724.   [Full text] 


    [4]Jin, Z., Zhang, H., & Yang, Z. (2017). The impact and freezing processes of a water droplet on different cold cylindrical surfaces. International Journal of Heat and Mass Transfer, 113, 318–323.   [Full text] 


    [5]Pasqualini, S., Jin, Z., & Yang, Z. (2017). Measurement of the flow structures in the wakes of different types of parachute canopies. Acta Mechanica Sinica, 34(2), 225–237.   [Full text] 


    [6]Wei, Z., Yang, Z., Xia, C., & Li, Q. (2017). Cluster-based reduced-order modelling of the Wake Stabilization Mechanism behind a twisted cylinder. Journal of Wind Engineering and Industrial Aerodynamics, 171, 288–303.   [Full text] 


    [7]Xia, C., Shan, X., & Yang, Z. (2016). Comparison of different ground simulation systems on the flow around a high-speed train. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 231(2), 135–147.   [Full text]


    [8]Xia, C., Shan, X., & Yang, Z. (2017). Detached-eddy simulation of ground effect on the wake of a high-speed train. Journal of Fluids Engineering, 139(5).   [Full text]


    [9]Xia, C., Wang, H., Shan, X., Yang, Z., & Li, Q. (2017). Effects of ground configurations on the slipstream and near wake of a high-speed train. Journal of Wind Engineering and Industrial Aerodynamics, 168, 177–189.   [Full text] 


    [10]Zhao, L., Gu, X., Gao, L., & Yang, Z. (2017). Numerical study on Airside Thermal-hydraulic performance of rectangular finned elliptical tube heat exchanger with large row number in turbulent flow regime. International Journal of Heat and Mass Transfer, 114, 1314–1330.   [Full text] 


    [11]Zhu, J. Y., & Hu, Z. W. (2017). Flow between the train underbody and trackbed around the bogie area and its impact on Ballast Flight. Journal of Wind Engineering and Industrial Aerodynamics, 166, 20–28.   [Full text]


    [12]Zhu, J. Y., Hu, Z. W., & Thompson, D. J. (2016). The effect of a moving ground on the flow and aerodynamic noise behaviour of a simplified high-speed train bogie. International Journal of Rail Transportation, 5(2), 110–125.   [Full text] 


    [13]Zhu, J. Y., Hu, Z. W., & Thompson, D. J. (2017). The flow and flow-induced noise behaviour of a simplified high-speed train bogie in the cavity with and without a fairing. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 232(3), 759–773.   [Full text] 


    [14]崔文诗,杨志刚 & 王国俊.(2017).定常射流阵列控制地面车辆气动阻力. 中南大学学报(自然科学版)(11),2912-2917.   [Full text]


    [15]崔文诗,杨志刚 & 王国俊.(2017).合成射流激励频率对车辆气动阻力的影响. 同济大学学报(自然科学版)(08),1167-1173.   [Full text]


    [16]崔文诗,杨志刚,王国俊 & 周华.(2017).不同后倾角三维车辆的尾迹非定常流动分析. 吉林大学学报(工学版)(03),717-724.   [Full text] 


    [17]贺银芝,龙良活 & 杨志刚.(2017).轿车侧窗风振特性的风洞试验研究. 汽车工程(09),1011-1017.   [Full text] 


    [18]贺银芝,吕越,龙良活 & 杨志刚.(2017).Ahmed模型不同后背倾角下的流场及气动噪声研究. 同济大学学报(自然科学版)(07),1022-1029.   [Full text]


    [19]贾青,沙潇 & 杨志刚.(2017).前轮扰流板高度对复杂轿车风阻的影响. 同济大学学报(自然科学版)(01),87-91.   [Full text]


    [20]李启良,戴文童,杜开颜 & 杨志刚.(2017).风洞结构对试验段静压系数和静压梯度的影响. 同济大学学报(自然科学版)(10),1506-1511.   [Full text]


    [21]李彦龙,朱晖 & 杨志刚.(2017).基于低风阻的电动汽车造型设计. 同济大学学报(自然科学版)(09),1366-1371.   [Full text]


    [22]沈哲,王毅刚,杨志刚 & 贺银芝.(2017).基于剪切层扇形分层模型的射流声传播分析. 同济大学学报(自然科学版)(04),596-601.   [Full text]


    [23]王冰心,杨志刚,朱晖 & 李彦龙.(2017).定常喷/吸流动主动控制方法减阻研究. 同济大学学报(自然科学版)(09),1383-1389.   [Full text]


    [24]王宏朝,单希壮 & 杨志刚.(2017).地面效应模拟对环境风洞中车辆冷却系统试验影响的数值模拟. 吉林大学学报(工学版)(05),1373-1378.   [Full text] 


    [25]王宏朝,单希壮 & 杨志刚.(2017).环境风洞阻塞比对冷却模块空气侧流场的影响. 同济大学学报(自然科学版)(09),1372-1376.    [Full text]


    [26]杨志刚,鞠树彬 & 贾青.(2017).3/4开口式风洞喷口来流风速的修正. 同济大学学报(自然科学版)(06),897-902.   [Full text]


    [27]杨志刚,周永祥,朱晖 & 李彦龙.(2017).低雷诺数k-ε模型钝体绕流场预测能力研究. 同济大学学报(自然科学版)(03),413-419.   [Full text]


    [28]赵兰萍,顾夕涛 & 杨志刚.(2017).变管径空冷凝汽器空气侧换热特性研究及优化. 同济大学学报(自然科学版)(04),589-595.   [Full text]


    [29]朱晖,郑子浩 & 杨志刚.(2017).车尾水平收缩气动减阻的规律及机理. 同济大学学报(自然科学版)(09),1377-1382+1389.   [Full text]


    [30]朱剑月,王毅刚,杨志刚,李启良 & 陈羽.(2017).高速列车转向架区域裙板对流场与气动噪声的影响. 同济大学学报(自然科学版)(10),1512-1521.   [Full text]

















  • 2016

    SCI索引:

    [1].   Jin,Zheyan; Wang, Zhangning; Sui, Dongyu; The impact and freezing processes of awater droplet on different inclined cold surfaces. INTERNATIONAL JOURNAL OFHEAT AND MASS TRANSFER, 2016,97: 211-223.

    [2].   Jia,Qing; Yang, Wei; Yang, Zhigang. Numerical study on aerodynamics of banked wingin ground effect. INTERNATIONAL JOURNAL OF NAVAL ARCHITECTURE AND OCEANENGINEERING, 2016,8(2):209-217.

    [3].   HuiZhu; Yang Zhigang; Shen Chen.Fluid-structure interaction study ofthree-dimensional vehicle model under crosswind. ADVANCES IN MECHANICALENGINEERING, 2016,8(2):1-8

    [4].   DongXinfeng; Zhang Weimin; Sun Jiabin. The estimation of cutting force coefficientsin milling of thin-walled parts using cutter with different tooth radii[J].Proceedings of the Institution of Mechanical Engineers, Part B: Journal ofEngineering Manufacture, 2016,230(1):194-199.

    [5].   WuzhouYu; Xu Wang; Rui Wu; Jiangling Yu; Zaixiu Jiang; Dongxing Mao. Wave propagationin a waveguide with continuous right-angled corners: Numerical simulations andexperiment measurements. Applied Acoustics, 2016, 104:6-15.

    [6].   LChang; X Zhang; SJ Wang; J Gao. Control room contaminant inleakage produced bydoor opening and closing: Dynamic simulation and experiments. Building andEnvironment, 2016,98:11-20.

    [7].   JGao; LJ Zeng; L Wu; XH Ding; X Zhang. Solution for sudden contaminationtransport through air duct system: Under a puff release. Building andEnvironment, 2016,100:19-27.

    [8].   Jin,Zheyan; Sui, Dongyu; Yang, Zhigang. The impact, freezing, and melting processesof a water droplet on an inclined cold surface. INTERNATIONAL JOURNAL OF HEATAND MASS TRANSFER, 2015, 90:439-453.

    [9].   Bashirnezhad,Kazem; Rashidi, Mohammad Mehdi; Yang, Zhigang.A comprehensive review of lastexperimental studies on thermal conductivity of nanofluids. JOURNAL OF THERMALANALYSIS AND CALORIMETRY, 2015,122(2):863-884.

    [10].Wang,Yigang; Yang, Jiashun; Jia, Qing. An Improved Correction Method for SoundSource Drift in A Jet Flow and Its Application to A Wind Tunnel Measurement.ACTAACUSTICA UNITED WITH ACUSTICA, 2015, 101(3): 642-649.

    [11].Yang,Wei; Yang, Zhigang; Collu, Maurizio. Longitudinal static stability requirementsfor wing in ground effect vehicle.INTERNATIONAL JOURNAL OF NAVAL ARCHITECTUREAND OCEAN ENGINEERING, 2015, 7(2):259-269.

    [12].MoFangshuo. Reverberation decay functions for narrow bands obtained from filteredtime-windowed room impulse responses. J. Acoust. Soc. Am..2015, 137(6):3555–3558.

    [13].ZhuPeisheng; Mo Fangshuo*; Kang Jian and Zhu Guofeng. Comparisons betweensimulated and in-situ measured speech intelligibility based on (binaural) roomimpulse responses. Applied Acoustics, 2015, 97:65-77.

    [14].ShaoZhiyue; Mo Fangshuo and Mao Dongxing. The effect of stimulus bandwidth onbinaural loudness summation. J. Acoust. Soc. Am., 2015, 138(3): 1508–1514.

    [15].DongXinfeng; Zhang Weimin. Degradation analysis of grinding machine spindle systemsbased on complexity[J]. Proceedings of the Institution of Mechanical Engineers,Part B: Journal of Engineering Manufacture, 2015,229(8): 1467-1471.

    [16].JGao; YT Jian; CS Cao; X Zhang. Indoor emission, dispersion and exposure oftotal particle-bound polycyclic aromatic hydrocarbons during cooking.Atmospheric Environment, 2015,120: 191-199.

    [17].Zhi-junWu; Xiao Yu; Fu Le-zhong; Deng Jun; Hu Zong-jie; Li Li-guang. A high efficiencyOxyfuel internal combustion engine cycle with water direct injection for wasteheat recovery. Energy, 2014,70:110-120.

    [18].Wang,Yigang; Li, Qiliang; Yang, Zhigang. Aerodynamic and aero noise of stationarytire.NOISE CONTROL ENGINEERING JOURNAL, 2014,62(6): 483-490.

    [19].Jin,Zheyan; Dong, Qiaotian; Yang, Zhigang. A stereoscopic PIV study of the effectof rime ice on the vortex structures in the wake of a wind turbine.JOURNAL OFWIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2014,134: 139-148.

    [20].Jin,Zheyan; Wang, Yanming; Yang, Zhigang. An experimental investigation into theeffect of synthetic jet on the icing process of a water droplet on a coldsurface. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2014,72: 553-558.

    [21].Jin,Zheyan; Jin, Songyue; Yang, Zhigang. Visualization of icing process of a waterdroplet impinging onto a frozen cold plate under free and forced convection.JOURNAL OF VISUALIZATION, 2013,16(1): 13-17.

    [22].YangWei; Yang Zhigang.Aerodynamic investigation on tiltable endplate for WIG craft.AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, 2012,84(1): 4-12

    [23].Li,Qiliang; Yang, Zhigang; Wang, Yigang. Experimental and numerical studies onaerodynamic noise of automotive rear view mirror. NOISE CONTROL ENGINEERING JOURNAL,2011,59(6): 613-621.

    [24].YangWei; Yang Zhigang.Schemed Power-augmented Flow for Wing-in-ground Effect Craftin Cruise. CHINESE JOURNAL OF AERONAUTICS, 2011,24(2): 119-126.


    EI索引:


    [1].    贾青,杨美,杨志刚. 离鳍对方背体气动特性影响的数值模拟和试验[J]. 同济大学学报(自然科学版),2016,44(6):943-948.

    [2].    崔文诗,杨志刚,朱晖. 合成射流对类车体流动控制的影响[J]. 同济大学学报(自然科学版),2016,44(6):937-943.

    [3].    陈羽,高喆,杨志刚,单希壮. 底部结构对高速列车流场及气动优化规律的影响[J]. 同济大学学报(自然科学版),2016,44(6):930-936.

    [4].    杜旭之,杨志刚,李启良,赵兰萍. 某乘用车制动盘冷却特性的研究[J].同济大学学报(自然科学版),2016,44(5):787-793.

    [5].    李启良,钟立元,王毅刚,杨志刚.汽车空调气动噪声数值与试验研究.同济大学学报(自然科学版),2016,44(4)620-624.

    [6].    贺银芝,杨志刚,王毅刚.某轿车车内气动噪声特性的试验研究.汽车工程,2016,01:72-77.

    [7].    袁海东,李启良,杨志刚.移动带和切向吹气对气动力的影响.同济大学学报(自然科学版),2016,01:146-149.

    [8].    朱晖,杨志刚,谭鹏,丰成杰.流体仿真平台对汽车外流场仿真能力的对比研究.汽车工程,2016,02:163-167+199.

    [9].    赵兰萍,杨志刚.管间距对矩形翅片椭圆管换热管束性能的影响.同济大学学报(自然科学版),2016,01:150-154+160.

    [10]. 赵兰萍,杨志刚.管束排列方式对矩形翅片椭圆管束性能的影响.同济大学学报(自然科学版),2016,02:298-302.

    [11]. 李启良,杨志刚,陈力.汽车气动升力风洞试验值的修正方法.汽车工程,2015,01:88-91.

    [12]. 隋冬雨,金哲岩,杨志刚.冷表面上水滴结冰问题的实验研究进展.制冷学报,2015,02:14-20+40.

    [13]. 夏超,单希壮,杨志刚,李启良,陈羽.风洞地面效应对高速列车空气动力学特性的影响.铁道学报,2015,04:8-16.

    [14]. 贾青,杨韡,杨志刚.地效翼空气动力风洞试验.同济大学学报(自然科学版),2015,04:605-610.

    [15]. 董新峰, 张为民, 邓松. 基于 Lempel-Ziv 指标的主轴系统退化[J]. 振动,测试与诊断, 2015, 35(1): 17-23.

    [16]. 董新峰, 张为民, 孙嘉彬, 刘朝晖. 薄壁件不一致刀齿铣削时铣削力系数构造与预测[J]. 机械工程学报,2015,51(19):197-205.

    [17]. 罗亮, 张为民, 周敏剑, Jürgen Fleischer. 滚珠丝杠进给系统动态特性集中质量建模与仿真[J]. 农业机械学报, 2015,46(12):370-377.

    [18]. Sunyu Tong, Haimiao Li, Zhaohui Yang, Jun Deng, Zongjie Hu, Liguang Li. Cycle Resolved Combustion and Pre-Ignition Diagnostic Employing Ion Current in a PFI Boosted SI Engine,SAE World Congress, Technical Paper 2015-01-0881.

    [19]. 夏超,单希壮,杨志刚,李启良.不同湍流模型在列车外流场计算中的比较.同济大学学报(自然科学版),2014,11:1687-1693.

    [20]. 杨志刚,沙潇,贾青.车轮宽度对轿车风阻的影响.同济大学学报(自然科学版),2014,11:1682-1686+1732.

    [21]. 李友才,许思传,杨志刚.车用PEMFC电堆低温起动试验研究.汽车工程,2014,12:1445-1448+1465.

    [22]. 陈力,刘晓晖,庞加斌,杨志刚.风洞试验中车辆锚定方式对气动力测量的影响分析.汽车工程,2014,11:1369-1371+1377.

    [23]. 韦甘,杨志刚,李启良.受内部空间约束的车身气动优化.同济大学学报(自然科学版),2014,12:1886-1889+1940.

    [24]. 林晨森,陈硕,李启良,杨志刚.耗散粒子动力学GPU并行计算研究.物理学报,2014,10:311-318.

    [25]. 贾青,李挺,杨志刚.旋转孤立车轮局部流场的影响评价.同济大学学报(自然科学版),2014,02:287-291.

    [26]. 韦甘,杨志刚,李启良.低阻车身形体的参数化建模与气动试验.同济大学学报(自然科学版),2014,05:769-772+781.

    [27]. 沈沉,杨志刚.时变侧风下双层客车的流固耦合数值模拟.工程力学,2014,07:203-207.

    [28]. 李启良,杨志刚,王毅刚,刘巧云.位于剪切层的移测架流固耦合分析.同济大学学报(自然科学版),2014,06:944-948+955.

    [29]. 贾青,李挺,杨志刚.旋转车轮对整车气动性能的影响评价.同济大学学报(自然科学版),2014,06:949-955.

    [30]. 贾青,吴桐,杨志刚.涡流发生器对3/4汽车模型风洞流场品质的影响.同济大学学报(自然科学版),2014,06:956-962+975.

    [31]. 贾青,杨志刚.汽车前端部件结构对冷却性能的影响.同济大学学报(自然科学版),2014,08:1221-1226.

    [32]. 李启良,陈力,杨志刚,徐玉冬.不同扩散角下汽车风洞试验段轴向静压系数.同济大学学报(自然科学版),2014,08:1227-1230.

    [33]. 韦甘,杨志刚,李启良.基于分步遗传算法的车身气动优化.吉林大学学报(工学版),2014,06:1578-1582.

    [34]. 韦甘,杨志刚,李启良.基于改进的Pareto遗传算法的车身气动多目标优化.汽车工程,2014,10:1243-1247.

    [35]. 朱兴一,俞悟周等.周期复合材料禁带特性及局域共振现象的试验研究[J]. 人工晶体学报,2014,43(11):2852-2859.

    [36]. 杨勇, 张为民, 陈希光. 数控机床导轨滑块结合部组建模与参数辨识方法研究[J]. 农业机械学报,2014,45(07):313-320.

    [37]. Haifeng Lu, Jun Deng, Zongjie Hu, Zhijun Wu, Liguang Li. Impact of Control Methods on Dynamic Characteristic of High Speed Solenoid Injectors, SAE Int. J. Engines. SAE World Congress, 2014,7(3):1445.

    [38]. Luo L, Zhang W M, Zhang Y L. Modeling and Simulation of Feed Drive System Vibrations Based on Dual Inertia System[C]. Advanced Materials Research, 2014, 989: 3117-3121.

    [39]. 杨志刚,苗露,赵兰萍,李启良.轮毂电机电动车流场特性数值计算.同济大学学报(自然科学版),2013,12:1872-1878.

    [40]. 丁宁,杨志刚,李启良.风洞移动带系统对气动升力影响的数值模拟.汽车工程,2013,02:143-146.

    [41]. 朱晖,杨志刚.汽车尾迹区涡流频率特性实验分析.实验流体力学,2013,03:65-69.

    [42]. 杨志刚,丁宁,李启良,庞加斌.移动带系统升力实验与数值研究.同济大学学报(自然科学版),2013,06:900-903.

    [43]. 朱晖,杨志刚.小尺寸缩比模型车风洞试验及数值验证.同济大学学报(自然科学版),2013,10:1562-1566.

    [44]. Mo Fangshuo, Wang Jiqing. The conventional RT is not applicable for testing the acoustical quality of unroofed theatres. Building Acoustics, 2013, 20(1): 81-86

    [45]. 贾青,王毅刚,杨志刚.汽车风洞试验段非定常流场的试验.同济大学学报(自然科学版),2012,01:97-101.

    [46]. 王毅刚,杨志刚.复杂结构声与振动主要能量传递路线识别.同济大学学报(自然科学版),2012,04:640-644.

    [47]. 贺银芝,杨志刚,王毅刚.汽车车身密封对车内气动噪声影响的机理及试验研究.汽车工程,2012,08:692-695+744.

    [48]. 李启良,杨志刚,赵兰萍.气动-声学风洞热交换器的气动噪声.同济大学学报(自然科学版),2012,08:1261-1264+1275.

    [49]. 朱晖,杨志刚.类车体外流场非稳态特性数值研究.空气动力学学报,2012,06:782-785.

    [50]. 张万平,杨志刚,肖国权.柴油机受热零部件-冷却系统的流/热耦合仿真分析.系统仿真学报,2011,01:203-206.

    [51]. 王毅刚,杨志刚,倪晓强,李启良.汽车声学模型风洞消声拐角数值计算与试验.同济大学学报(自然科学版),2011,02:271-275.

    [52]. 熊可嘉,杨志刚.轿车空调车室内流动换热计算.同济大学学报(自然科学版),2011,05:716-720.

    [53]. 李启良,杨志刚,王毅刚.汽车后视镜气动噪声的影响参数.同济大学学报(自然科学版),2011,08:1204-1207.

    [54]. 李启良,杨志刚,陈枫.汽车后视镜流场的试验与数值研究.同济大学学报(自然科学版),2011,07:1045-1049.

    [55]. 朱晖,杨志刚.类车体尾迹区雷诺应力实验分析.同济大学学报(自然科学版),2011,10:1543-1547.

    [56]. 贾青,杨志刚,李启良.汽车风洞试验段流场的试验研究.实验流体力学,2011,06:33-37.


    其他:


    [1].杨美,杨韡,杨志刚.地效翼地面粘性效应风洞试验研究[J].空气动力学学报,2015,33(1):82-86.

    [2].沈沉,杨志刚.Ahmed模型的流固耦合数值计算方法探索与实验验证[J].实验流体力学,2014,28(4):37-42.

    [3].贾青,杨韡,杨志刚.地效翼风洞试验支架干扰数值分析[J].实验流体力学,2014,28(1):85-88.

    [4].贾青,杨志刚.3/4开口式汽车风洞驻室内流场速度脉动的研究(英文)[J].空气动力学学报,2013,31(2):163-169.

    [5].朱晖,杨志刚.汽车尾迹区涡流频率特性实验分析[J].实验流体力学,2013,27(3):65-69.