[1]Abbas,M.,Bhatti,M.,&Rashidi,M.(2020). Heat transfer on magnetohydrodynamic stagnation point flow through a porous shrinking/stretching sheet: A numerical study. Thermal Science, 24(2 Part B),1335–1344.  [Full text] 

[2]Astanina,M.S.,Rashidi,M.M.,Sheremet,M.A.,&Lorenzini,G.(2020). Cooling System with Porous Finned Heat Sink for Heat-Generating Element. Transport in Porous Media,133(3), 459–478.  [Full text] 

[3]Chen,W.,Qin,X.,&Yang,Z.(2020). Effects of installation location on the in-service wind load of a tower crane. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 173(2), 141–156.  [Full text]

[4]Chen,W.,Qin,X.,Yang,Z.,&Zhan,P.(2019).Wind-induced tower crane vibration and safety evaluation. Journal of Low Frequency Noise, Vibration and Active Control, 39(2), 297–312.  [Full text] 

[5]Du,X.,Wei,A.,Fang,Y.,Yang,Z.,Wei,D.,Lin,C.H.,&Jin,Z.(2020). The effect of bend angle on pressure drop and flow behavior in a corrugated duct. Acta Mechanica, 231(9), 3755–3777.  [Full text]

[6]Du,X.,Yang,Z.,Jin,Z.,Zhu,Y.,&Zhou,Z. (2019). A numerical prediction and potential control of typical icing process on automobile windshield under nocturnal radiative cooling and subfreezing conditions. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 234(5), 1480–1496.  [Full text] 

[7]Fan,Y.,Xia,C.,Chu,S.,Yang,Z.,& Cadot,O. (2020). Experimental and numerical analysis of the bi-stable turbulent wake of a rectangular flat-backed bluff body. Physics of Fluids, 32(10), 105111.  [Full text]

[8]Fang,Y.,Yang,Z.,Ma,Y.,& Li,Q.(2020). Study of flow through and around a square cylinder array. Journal of Physics: Conference Series, 1600(1), 012029.  [Full text] 

[9]He,Y.,Schröder,S.,Shi,Z.,Blumrich,R.,Yang,Z.,& Wiedemann,J.(2020). Wind noise source filtering and transmission study through a side glass of DrivAer model. Applied Acoustics, 160, 107161.  [Full text] 

[10]Li,Q.,Dai,W.,Yang,Z.,&Jia,Q.(2019b). Investigation on aerodynamic characteristics of tailing vehicle hood in a two-vehicle platoon. Proceedings of the Institution of Mechanical Engineers, Part D:  Journal of Automobile Engineering, 234(1), 283–299.  [Full text] 

[11]Li,T.,Hemida,H.,Rashidi,M.M.,&Zhang,W. (2020). The effect of numerical divergence schemes on the flow around trains. Fluid Dynamics Research, 52(2), 025509.  [Full text] 

[12]Ma,Y.,&Yang,Z.(2020). Simplified and highly stable thermal Lattice Boltzmann method simulation of hybrid nanofluid thermal convection at high Rayleigh numbers. Physics of Fluids, 32(1), 012009.  [Full text] 

[13]Ma,Y.,Mohebbi,R.,Rashidi,M.M.,Yang,Z.,&Fang,Y.(2020).Baffle and geometry effects on nanofluid forced convection over forward- and backward-facing steps channel by means of lattice Boltzmann method. Physica A: Statistical Mechanics and Its Applications, 554, 124696.  [Full text] 

[14]Ma,Y.,Mohebbi,R.,Rashidi,M.,Yang,Z.,&Sheremet,M.(2020).Nanoliquid thermal convection in I-shaped multiple-pipe heat exchanger under magnetic field influence. Physica A: Statistical Mechanics  and Its Applications, 550, 124028.  [Full text] 

[15]Ma,Y.,Rashidi,M.,Mohebbi,R.,&Yang,Z.(2020). Nanofluid natural convection in a corrugated solar power plant using the hybrid LBM-TVD method. Energy, 199, 117402.  [Full text] 

[16]Yuan,H.,Yang,Z.,Wang,Y.,Fan,Y.,&Fang,Y.(2020).Experimental analysis of hydrodynamic and acoustic pressure on automotive front side window. Journal of Sound and Vibration, 476, 115296.  [Full text] 

[17]Zhao,L.,Wang,B.,Wang,J.,Zhu,Z.,Li,T.,Guo,B.,Zhang,J.,Zhang,H.,&Yang,Z. (2020). Effect of non-uniform airflow on the performance of a parallel-flow heat exchanger considering internal fluid  distribution—Simulation studies and its experimental validation. Applied Thermal Engineering, 180, 115685.  [Full text] 

[18]Zhao,L.,Zheng,Z.,Guo,B.,&Yang,Z.(2020). Experimental investigation on the thermal performance of air-cooled multi-port flat heat pipes. International Journal of Heat and Mass Transfer,154, 119600.  [Full text] 

[19]Zhao,Y.Y.,Yang,Z.G.,Li,Q.L.,&Xia,C. (2020). Analysis of the near-field and far-field sound pressure generated by high-speed trains pantograph system. Applied Acoustics, 169, 107506.  [Full text] 

[20]Zhou,Z.,Xia,C.,Shan,X.,&Yang,Z.(2019). The Impact of Bogie Sections on the Wake Dynamics of a High-Speed Train. Flow, Turbulence and Combustion, 104(1), 89–113.  [Full text] 

[21]戴文童,李启良,李卓明,常艺菲& 杨志刚.(2020).不同雷诺数下车辆队列尾车发动机舱盖气动特性研究. 汽车工程(05),593-599+607.  [Full text]

[22]邓韬,杨志刚 & 贾青.(2020).基于本征正交分解的DrivAer快背车非定常尾迹分析. 同济大学学报(自然科学版)(02),249-256.  [Full text]

[23]贾青,陈佳萍 & 杨志刚.(2020).基于气动减阻和散热需求的主动格栅优化设计. 同济大学学报(自然科学版)(02),264-275.  [Full text]

[24]贾青,林靖如,余霄雁 & 杨志刚.(2020).车身简化对不同轮辐下整车气动阻力变化趋势的影响. 同济大学学报(自然科学版)(01),78-86.  [Full text]

[25]李田田,赵兰萍,王建新,朱志军,张俊&张浩.(2020).发动机舱的冷却气流仿真与散热的改善. 汽车工程(09),1197-1205+1210.  [Full text] 

[26]沈哲,王毅刚,杨志刚 & 贺银芝.(2020).风洞中未知声源漂移误差的逼近修正. 吉林大学学报(工学版)(05),1584-1589.  [Full text] 

[27]沈哲,王毅刚,杨志刚,贺银芝& 彭里奇.(2020).用于汽车车内风噪评价的频谱光顺度研究汽车工程(09),1206-1210.  [Full text] 

[28]王宏朝,单希壮& 杨志刚.(2020).矩阵风扇冷却系统模糊控制的研究. 汽车工程(03),345-352.  [Full text] 

[29]杨志刚,范亚军,夏超,储世俊 & 单希壮.(2020).基于双稳态尾迹的方背Ahmed模型减阻吉林大学学报(工学版)(05),1635-1644.  [Full text]

[30]杨志刚,韩业恺,李启良 & 单希壮.(2020).D型体主被动结合流动控制研究. 同济大学学报(自然科学版)(04),566-574.  [Full text]

[31]杨志刚,徐鑫,赵兰萍,郑振鹏 & 林赵敏.(2020).乘员舱驾驶员位置微环境及人体热舒适分析. 同济大学学报(自然科学版)(05),733-742.  [Full text]

[32]张佳,吴海波,陈蒨,方志云,王毅刚 & 余柳平.(2020).基于格子波尔兹曼方法的某乘用车空调系统气动噪声的直接模拟与优化. 汽车工程(08),1103-1109.  [Full text] 

[33]赵兰萍,郑振鹏,郭本涛 & 杨志刚.(2020).结构因素对动力电池用多孔平板热管性能的影响. 同济大学学报(自然科学版)(04),559-565.  [Full text]

[34]朱晖,杨志刚 & 王国俊.(2020).基于圆环孔合成射流器的LED前照灯散热控制. 同济大学学报(自然科学版)(02),257-263.  [Full text]

[35]朱剑月,吕苏,陈力 & 沈哲.(2020).高速列车底部流动特性分析. 机械工程学报(12),133-143.  [Full text]